
AFRL-SR-AR-TR-10-0030

REPORT DOCUMENTATION PAGE
j_

The public reporting burden (or thie collection o(Information ia estimated to average 1 hour per reaponae, Including lho time (or reviewing instructions, searching existing data aourcea, gathering end
maintaining the data needed, and completing and reviewing the ooOection ol Information. Send comments regarding this burden estimate or any other aepecl of this corlecaon of Information. Including
suggestions for reducing Die burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should bo aware that notwithstanding any other provision of law. no
penjon ahull be subject to any penally for falling to comply with a collection of Information If It does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

16-03-2010
2. REPORT TYPE

Final Technical
3. DATES COVERED (From • To;

May 2007 - November 2009
4. TITLE AND SUBTITLE
Scalable Simulations of Dynamics of Relationships

5a. CON TRACTNUMBER

Sb. GRANT NUMBER

FA9550-07-1-0437

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Gchrkc, Johannes

5d. PROJECT NUMBER

5o. TASK NUMBER

5f. WORK UNIT NUMBER

.PERFORMING ORGANIZATION
REPORT NUMBER

OSP 53525

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
373 Pine Tree Road
Ithaca, MY 14850

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research QQ |_
875 N. Randolph Street, Room 3112
Arlington, VA 22203 U. s>6NsbR/MONrroR's RE>6RT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; distribution is Unlimited

13. SUPPLEMENTARY NOTES 20100511292
14. ABSTRACT
With funding from this grant, we developed a novel technique by which we can convert a simulation into a database query plan, and optimize its
performance with database processing techniques. As part of this research we made the following five contributions: (l) We designed a novel
design pattern for behavioral simulations; any simulation developed using this pattern can be converted into a database query plan. (2) We
developed a novel language with formal semantics that supports this software design pattern. (3) We developed an optimizing compiler that
automatically converts simulations written in our programming language into database query plans. (4) We developed novel algorithms for
optimizing the query plans produced by our compiler. (5) We developed novel techniques for integrating our technology into a distributed
simulation platform.

15. SUBJECT TERMS
Simulations, Programming Languages, Databases

• 7. LIMITATION OF
ABSTRACT

Unlimited

18. NUMBER
OF
PAGES

16. SECURITY CLASSIFICATION OF:
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

u

19a. NAME OF RESPONSIBLE PERSON
Johannes Gehrke

19b. TELEPHONE NUMBER (Include area code)
607-257-5438

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39 16

Adobe Professional 7.0

Scalable Simulations of Dynamics of Relationships

Final Performance Report 2006-2009
PI: Johannes Gehrke
Award No: AFOSR FA9550-07-1-0437
Institution: Cornell University, Ithaca, NY 14853

Objectives

With funding from this project, we addressed the following research problems:
• The application of database principles to large-scale behavioral simulations. As the

military expands its mission into new areas such as domestic disaster recovery, large-
scale simulations of individual behavior are important tools for analyzing how best to
address these situations. However, behavioral simulations are often complex, and do not
scale enough to cover the population of a major urban area. How can we leverage the
technology from massively scalable database systems to produce efficient large-scale
behavioral simulations?

• A language for expressing efficient large-scale behavioral simulations. Defining a
large-scale simulation in a database query language like SQL is prohibitively complex;
there is no way to isolate or encapsulate individual behavior. What language features do
we need to translate behavioral simulations of individuals into database query plans?

• New algorithms for processing large-scale simulations. The types of database query
plans that correspond to large-scale simulations are likely very different from traditional
database query plans. What new algorithms can we develop specifically to optimize
these types of query plans?

Executive Summary

With funding from this grant, we were able to develop a novel technique by which simulations
are converted into a database query plan, and optimize its performance with database processing
techniques. As part of this research we made the following five contributions:

1. We designed a novel design pattern for behavioral simulations; any simulation
developed using this pattern can be converted into a database query plan (either
manually or automatically).

2. We developed a novel language with formal semantics that supports this software
design pattern.

3. We developed an optimizing compiler that automatically converts simulations written
in our programming language into database query plans.

4. We developed novel algorithms for optimizing the query plans produced by our
compiler.

5. We developed novel techniques for integrating our technology into a distributed
simulation platform.

Publications

Walker White, Alan Demers, Christoph Koch, Johannes Gehrke, and Rajmohan
Rajagopalan. Scaling Games to Epic Proportions. SIGMOD 2007: 31-42.
Walker White, Benjamin Sowell, Johannes Gehrke, and Alan Demers. Declarative
Processing for Computer Games. SIGGRAPH Sandbox 2008: 23-30.
Walker White, Christoph Koch, Nitin Gupta, Johannes Gehrke, and Alan Demers.
Database Research Opportunities in Computer Games. SIGMOD Record, September
2007,7-13.
Robert Albright, Alan Demers, Johannes Gehrke, Nitin Gupta, Hooyeon Lee, Rick
Keilty, Gregory Sadowski, Ben Sowell, and Walker White. SGL: A Scalable Language
for Data-Driven Games. SIGMOD 2008: 1217-1222.
Nitin Gupta, Alan Demers, and Johannes Gehrke. SEMMO: A Scalable Engine for
Massively Multiplayer Online Games. SIGMOD 2008: 1235-1238.
Walker M. White, Christoph Koch, Johannes Gehrke, and Alan J. Demers. Better Scripts,
Better Games. ACM Queue, Volume 6, Issue 7. November 2008.
Walker M. White, Christoph Koch, Johannes Gehrke, Alan J. Demers: Better Scripts,
Better Games. Communications of the ACM 52(3): 42-47 (2009)
Nitin Gupta, Alan J. Demers, Johannes Gehrke, Philipp Unterbrunner, Walker M. White:
Scalability for Virtual Worlds. ICDE 2009: 1311-1314
Ben Sowell, Alan J. Demers, Johannes Gehrke, Nitin Gupta, Haoyuan Li, Walker M.
White: From Declarative Languages to Declarative Processing in Computer Games.
CIDR 2009
Alan Demers, Johannes Gehrke, Christoph Koch, Benjamin Sowell, and Walker White.
Database Research in Computer Games (Tutorial Session). SIGMOD 2009: 1011-1014.
Marcos Vaz Salles, Tuan Cao, Benjamin Sowell, Alan Demers, Johannes Gehrke,
Christoph Koch, and Walker White. An Evaluation of Checkpoint Recovery for
Massively Multiplayer Online Games. VLDB 2009: 1258-1269.
Scaling Simulations Through Declarative Processing. Microsoft eScience Workshop,
Pittsburg, Pennsylvania, October 2009.

In addition, we have released a language specification document for the simulation language
developed as part of this research. This document may be found online at

http://www.cs.cornell.edu/bigreddata/games/BRASILManual.pdf

Personnel

The following people worked on research associated with this award:
• Professor Johannes Gehrke was the PI of the project; he is an expert on the foundations

of scalable systems. He worked on all aspects of the research.
• Dr. Walker White. White is a research associate; he is an expert on the theory of

expressiveness and the design of languages. He worked on novel compiler optimizations
and design patterns.

• Dr. Alan Demers is a principal scientist in Gehrke's group; he is an expert in the design
and implementation of scalable systems. He worked on all aspects of the research.

• Professor Christoph Koch is on the faculty in the Department of Computer Science at
Cornell University; he is an expert in declarative languages. He worked on the design of
novel compilation techniques.

• Dr. Yanif Ahmad is a postdoc who worked on the implementation of scalable query
processing algorithms.

• Dr. Marcos Vaz Salles is a postdoc who worked on techniques for scaling up simulations
and on distributing simulation code.

• Iyer Parvati is a PhD student who worked on techniques for simulations on large graphs.
• Guozhang Wang is a PhD student who worked on techniques for scaling up simulations.

Interactions with and Transitions to Industry

In May 2008, Dr. Walker White made a visit to the ACES, the Flight Simulator product division
at Microsoft, to present an overview of our technology. We also received additional funding
from Microsoft for software development of a simulation engine. Walker White (co-PI) and
Gehrke (PI) also gave various other talks at Microsoft about this work, and they are highly
interested in the results.

Talks about Work Funded by This Award

Scaling Games to Epic Proportions. Colloquium at the University of Texas at Austin.
Austin, TX, March 2007.
Scaling Games to Epic Proportions. 2007 RESCUE Distinguished Lecture Series,
University of California Irvine, Donald Bren School of Information and Computer
Science, March 2007.
Scaling Games to Epic Proportions. Keynote at the Greater New York Area DB/IR Day
Spring 2007. Hawthorne, NY, April 2007.
Scaling Games to Epic Proportions. Colloquium at Microsoft Research. Seattle, WA,
August 2007.
Scaling Games to Epic Proportions. Colloquium at Yahoo! Research. Santa Clara, CA,
August 2007.

Scaling Games to Epic Proportions. Colloquium at the University of Massachusetts
Amherst. Amherst, MA, April 2007.
Scaling Computer Games to Epic Proportions. Undergraduate colloquium at the
Dartmouth College. Hanover, New Hampshire, October 2007.
Scaling Computer Games to Epic Proportions. Computer science colloquium at the
Brown University. Providence, Rhode Island, November 2007.
What's Next in Database Research? Colloquium at the University of Tromso. Tromso,
Norway, December 2007.
Scaling Games to Epic Proportions. Colloquium at the Department of Computer Science,
ETH Zurich. Zurich, Switzerland, March 2008.
Scaling Games to Epic Proportions. Distinguished Lecture at the Max Planck Institute for
Software Systems. Saarbrucken, Germany, March 2008.
Scaling Games to Epic Proportions. Colloquium at the Ecole Polytechnique Federale de
Lausanne. Lausanne, Switzerland, March 2008.
Applying Database Technology to Games and Simulations. Presentation to ACES,
Microsoft Flight Simulator division. Redmond, Washington, May 2008.
Scaling Games to Epic Proportions. Colloquium at the Humboldt-University at Berlin.
Berlin, Germany, June 2008.
Scaling Computer Games. Talk at Microsoft Research. Seattle, WA, July 2008.
Scaling Games to Epic Proportions. Computer Science Distinguished Lecture Series,
Department of Computer Science, University of Illinois at Urbana-Champaign. Urbana,
IL, October 2008.
Scaling Games to Epic Proportions. Colloquium at the University of Trondheim.
Trondheim, Norway, December 2008.
Declarative Processing for Computer Games. Distinguished Lecturer Series, Bren School
of Information and Computer Sciences. Irvine, Ca, January 2009.
Declarative Processing for Computer Games. Colloquium at the University of
Washington, Department of Computer Science and Engineering. Seattle, WA, January
2009.
Declarative Processing for Computer Games. Colloquium at Carnegie Mellon University,
Department of Computer Science. Pittsburgh, PA, February 2009.
Declarative Processing for Computer Games. Colloquium at RPI, Department of
Computer Science. Troy, NY, February 2009.
What Can Database Systems Do For Computer Games. Colloquium at Harvard
University, Department of Computer Science. Boston, MA, April 2009.
Bringing Database Research to Computer Games and Simulations. Keynote at the 35th
International Conference on Very Large Data Bases. Lyon, France. August 2009.
Scaling Simulations Through Declarative Processing. Microsoft eScience Workshop,
Pittsburg, Pennsylvania, October 2009.
A Database Approach to Scaling Games and Simulations. Colloquium at the Max Planck
Institute for Software Systems. Saarbrucken, Germany, December 2009.
A Database Approach to Scaling Games and Simulations. Colloquium at the Department
of Computer Science, University of Heidelberg. Heidelberg, Germany, December 2009.

Major Discoveries

1. A novel programming pattern that allows behavioral simulations to be expressed as
database query plans; from this pattern, we designed a novel programming language and
an optimizing compiler.

2. Optimization algorithms for simulation query plans that provide asymptotically better
performance over traditional techniques; this improvement is several orders of magnitude
in many of our experiments.

3. Concurrency-control algorithms for processing distributed simulations.

Honors/A wards

Johannes Gehrke received a Faculty Development Award from the New York State Foundation
for Science, Technology, and Innovation.

Major Technical Contributions

1. A Design Pattern for Efficient Simulated Behavior

A serious problem with large-scale behavioral simulations is their computational expense; as
each individual may have to examine or interact with every other individual in order to
determine its next action, the cost can grow quadratically with the number of individuals.
However, much of this computation is redundant; individuals with similar properties see the
world in the same way and come to the same conclusions.

This provides us with our motivation for transforming a simulation into a database query plan.
Query plans process data set-at-a-time. That is, at every point of the computation, they read in
all the data at once and perform related operations on it. This makes it easier to identify and
eliminate redundant computation, and is a large part of what makes database management
systems scalable.

However, database query languages are declarative languages. They do not have variables or
assignments like we would find in an imperative language like C/C++ or Java. This is an issue
for programming behavioral simulations. We would like to program each individual separately,
and allow it to interact with others via the exchange of information. Exchanging information
between programs is difficult without either variables or a message-passing framework, neither
of which is present in declarative languages.

To address this problem, we have designed a new programming design pattern for behavioral
simulations, which we call the state-effect pattern. This pattern allows individuals to exchange
information via variable assignments; however, programs written in this pattern can always be

rewritten to eliminate these variables. This makes it possible to rewrite the simulation in a
database language like SQL

In the state-effect pattern, we assume that individual behaviors are processed together in discrete
time steps. These time steps might correspond to animation frames or to some simulated unit of
time (e.g. 1 second). Processing during each time step is separated into a query phase and an
update phase. Intuitively, the query phase reads the state of an individual from a previous time
step; it cannot make any changes to an individual. On the other hand, the update phase changes
the state of an individual, but cannot access other individual while doing so. The advantage of
these read-only and write-only phases is that they can be rewritten to use no variables at all; this
makes the simulation more suitable for conversion into a database-like language.

To support these two phases, the attributes of each individual are classified as either states or
effects. These classifications obey the following rules:

• State attributes are read-only in the query phase.

• Effect attributes are write-only in the query phase.

• Multiple writes to an effect attribute are aggregated'via an aggregate function like sum or

average.

• Effect attributes are read-only in the update phase.

• In the update phase, each individual updates its state attributes from its effects and old

state values.

The key feature of this pattern is that effects are aggregated. An aggregation function takes in a
set of data, and combines it into a single value; it does this independent of the order in which the
data is received. This is an extremely powerful feature, as it allows us to dramatically rearrange
the processing of individuals during the simulation. We can process individuals in any order, or
even in parallel. We can split up an individual, processing it for a little while, switching to a new
individual, and then returning to the original individual. All that matters is that all of the data for
each effect attribute arrives before the end of the query phase.

To best apply this programming pattern, we need a custom programming language that enforces
the pattern and transforms the program into a database query plan. However, we believe that the
identification of this pattern is potentially useful for existing programming languages. While
these languages may have features (such as variable assignments) that prevent their programs
from being converted to a query plan, compiler extensions may be able to optimize the parts of
their programs that conform to the state-effect pattern.

2. A Programming Language Supporting our Pattern for Efficient Simulated
Behavior

In order to convert to the simulation to a database query plan, we need to ensure that it conforms
to the state-effect pattern. For this reason, we have developed a programming language for
behavioral simulations that makes the state effect pattern explicit. We call this language
BRASIL (Big Red Agent Simulation Language). BRASIL is an object-oriented language that
looks superficially like Java. Each behavior that we want to program is its own class; all
individuals that implement this behavior are instances of this class.

Below is an example of a BRASIL script. This script represents a person performing a random
walk through a crowd in two-dimensional space. The person uses an imaginary force to repel
others nearby in order to push her way through the crowd.

class Person {
// Location of person in 2D space
public state float x : (x+vx);
public state float y : (y+vy);

// The latest velocity for the person
public state float vx : vx + rand() + avoidx / count * vx;
public state float vy : vy + rand() + avoidy / count * vy;

// Used to update our velocity
private effect float avoidx : sum;
private effect float avoidy : sum;
private effect int count : sum;

/** The query-phase for this person. */
public void run() {

// Use "forces" to repel others that are too close
foreach(Person p : Extent<Person>) {

p.avoidx <- 1 / abs(x - p.x);
p.avoidy <- 1 / abs(y - p.y);
p.count <- 1;

»>

There are a few important features to note about this script. First, all the fields are clearly
denoted as either state or effect. Each state field has an update rule; this is an expression that
takes effects and old state values and uses them to produce the new state value. In contrast, each
effect field has an aggregation function associated with it. This function is used to combine all
the values assigned to the same effect field. In this respect, effect fields are similar to aggregator
variables in Google's Sawzall language; for this reason we use the Sawzall operator <- for
assignments to effect fields.

Another thing to notice in this script is the run () method. This method defines the query phase
for this individual. Intuitively, our simulation proceeds as follows:

• We process the run() method for each individual. This results in a collection of effect

assignments.

• For each individual, we aggregate all of the effect assignments made to it in the query

phase.

• For each state field of each individual, we apply the update rule to get the new value.

In order to convert our scripts into database query planes, we need place two further restrictions
on our language. First of all, local values must also conform to the state-effect pattern, so that
they can be eliminated as well. Local values are either constants, which cannot be changed after
they are initialized, or effects, which have an associated aggregator. The following script is
equivalent to our example above, but uses local values to for the main computation in the query
phase:

class Person {
// Location of person in 2D space
public state float x : (x+vx);
public state float y : (y+vy);

// The latest velocity for the person
public state float vx : nvx;
public state float vy : nvy;

// New velocity
public effect float nvx : sum;
public effect float nvy : sum;

/** The query-phase for this person. */
public void run() {

// Local variables
effect avoidx
effect avoidy
effect count

sum;
sum;
sum;

// Use "forces" to repel others that are too close
foreach(Person p : Extent<Person>) {

avoidx <- 1 / abs(x - p.x);
avoidy <- 1 / abs(y - p.y);
count <- 1;

}
nvx <- vx + rand() + avoidx / count * vx;
nvy <- vy + rand() + avoidy / count * vy;

}}

In addition to this restriction on local variables, we prohibit f or-loops or while-loops. The
only supported form of iteration is a f oreach-loop, which iterates over the elements of a set; in
the above example, this set is Extent<Person>, which is the set of all instances of the class
Person. These loops function as a localized version of the state-effect pattern. Effect variables
declared outside of a f oreach-loop are write-only within the loop. However, effect variables
can always be read outside of the f oreach-loop, as that can be considered their update phase.
In the above example, avoidx is write-only in the f oreach-loop, but can be read for the
computation of nvx outside of the loop.

While these limitations may seem restrictive at first, we have discovered that it is possible to
design a large class of behavioral simulations within this language. Everything follows from the

state-effect pattern; once that pattern is mastered, programming in BRASIL is relatively
straightforward. When we combine this with the ability to compile BRASIL into database query
plans, it becomes a very powerful framework for programming behavioral simulations.

Finally, we have integrated some features to support transactions for multiple effect fields. The
state-effect pattern ensures that all individuals interact with one another simultaneously, and
effects are aggregated together. When effects may be in conflict with one another, the
aggregation method may simply pick a single effect and disregard the others. In essence, this is
equivalent to aborting an assignment to an effect field. However, sometimes our simulation
programs may want to couple two effects together. For example, in the first Person script
above, we may want to assure that if an assignment to the avoidx effect field is aborted, then
so is an assignment to the avoidy field. This coupling of assignments is very similar to that of
transactions in databases, where an entire compound action is either committed or aborted.

3. An Optimizing Compiler That Converts BRASIL Programs into Database
Query Plans

Because BRASIL strictly enforces the state-effect pattern, it is possible to compile any BRASIL
script into a database query plan. This plan can be represented in either SQL or some other
query plan representation format. In our work on BRASIL, we chose the relational algebra as
our representation format, as it is common to all database query languages and is one of the
cleanest representations.

Our compiler performs a source-to-source translation between BRASIL syntax and relational
algebra expressions. The language features of BRASIL have a direct correspondence to database
operations.
Conditionals correspond to selecting data from a database table, and f oreach-loops are
equivalent to joining two tables together. Assignments to an effect variable translate into
aggregating data in a table.

One of the major advantages of converting BRASIL programs into database query plans is that
we can use "rewrite rules" from the database literature to transform and reorder suboptimal code.
For example, the program code

effect counts : sum;
effect countd : sum;
foreach(Person p : Extent<Person>) {

foreach(Person q : Extent<Person>) {
if (p == q) (counts <- 1;
else { countd <- 1;

is equivalent to the program code

effect counts : sum;
effect countd : sum;
foreach(Person p : Extent<Person>) {

counts <- 1;

countd <- (counts-1)*(counts-1);

The first program has two nested loops and is much less efficient. When we convert these
programs into the relational algebra, a database query processor will recognize that the joins in
the first program are redundant and eliminate them. The resulting query plan after this join
elimination will be the same as if we translated the second program directly.

There are many other rewrite rules that we can apply to the query plans generated by BRASIL
scripts. Another example is using database duplicate elimination to remove redundant
computation. In simple experiments where the individuals have to perform expensive scientific
computation (but not much else), duplicate elimination has resulted in performance
improvements of an order of magnitude.

4. Optimization Algorithms for Database Query Plans Representing
Simulated Behavior

While rewrite rules allow us to perform some optimization on our behavioral simulations, they
are primarily useful in removing unnecessary code. By themselves, they do not help with the
quadratic behavior that results when each individual interacts with every other individual. To do
that, we need to leverage other database techniques, such as automatic index generation.

By examining the query plans generated by the BRASIL compiler, we have seen that the vast
majority of plans contain spatial joins, and that this is the source of the quadratic behavior. In a
spatial join, each individual is paired with all of the other individuals nearby. There are many
indices in the literature for improving database performance of spatial joins. However, these
indices only improve performance if, for each individual, they can filter out a large number of
individuals that do not interact with it. If the individuals in the simulation are close together,
then none are filtered, and so there is no performance improvement.

However, we have discovered that we can improve performance even in the case where all
individuals interact with one another, through the use of aggregate indices. Unlike in standard
database query plans, the queries produced by BRASIL always follow a spatial join with an
aggregate computation that collapses each set of pairings into a single value. Instead of filtering
out extra individuals, these indices precompute the aggregate computation over sets of
individuals so that we can share computation between multiple individuals.

Aggregate indexing is not new, but we can use it in novel ways by exploiting the guarantees
provided by the state-effect pattern. In particular, the existence of separate query and update
phases ensures there will be enough queries between index updates to amortize the cost of an
asymptotically efficient bulk-build operation at every tick. Without this guarantee, we would
need to use more conventional dynamic structures, supporting insertions and deletions, at a
factor of log n penalty in asymptotic cost. In practice, this has resulted in an order of magnitude
improvement on simulations with only 10000 individuals.

Other optimizations are enabled by the existence of query and update phases For example, we
have been able introduce sweep-line algorithms from computational geometry into spatial
indexing techniques to further improve the performance of our simulations.

5. Distribution of Database Query Plans Representing Simulated Behavior

Most of our work on this project has involved the use of database techniques to optimize
behavioral simulations on a single machine. However, we have begun some initial investigations
in using database techniques to distribute behavioral simulations across multiple machines. The
primary issues are communication and synchronization: At the end of each time step, every
individual has to receive the effect computations from all other individuals before proceeding.
The necessary network communication can impede the performance of the simulation.

There are many techniques in the literature to reduce network overhead by limiting
communication to individuals that are "visible" to one another. However, simple visibility is
often not sufficient. For example, a simulation may have an "observer" object that gathers
statistics from all other individuals in the database

Another issue with visibility-restricted algorithms is that they are unable to deal with the
transitivity of actions; individuals can easily interact with one another even if they cannot see
one another. Suppose we have three individuals A, B, and C where A and B are visible to each
other, and B and C are visible to each other, but A and C cannot see one another. A visibility-
restricted algorithm will not send any coordinated messages between A and C. As we have
shown, this can lead to an inconsistent state in a distributed simulation.

Fortunately, when we translate simulations into database queries, they have a lot of semantic
information that can be leveraged to limit communication. Simulations are essentially high-
dimensional databases where the attributes can change only in predictable ways. By treating
each time step as a database transaction, we were able to take ideas from distributed databases to
limit communication overhead for a wide class of behavioral simulations. In particular, while
were able to handle more complex behavioral interactions than the visibility-restricted
algorithms could, our algorithms added only 1% overhead to the state-of-the-art visibility-
restricted algorithms.

We also examined the issue of fault tolerance in distributed simulations. All of the individuals in
a simulation are interdependent: If a machine in a distributed simulation goes down the
simulation cannot proceed until it is restored. As part of this research we performed a thorough
experimental evaluation of various checkpoint-recovery algorithms in the literature. Our
analysis considered the overhead of supporting these algorithms and the expected recovery time.
For our simulations, there was no clear winner. For simulations with very high update rates, a
naive snapshot scheme performs best, while for computationally intensive simulations with
lower update rates the best option is a more sophisticated copy-on-update scheme.

